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Phase twisted modes and current reversals in a lattice model of waveguide arrays
with nonlinear coupling
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We consider a lattice model for waveguide arrays embedded in nonlinear Kerr media. Inclusion of nonlinear
coupling results in many phenomena involving complex, phase-twisted, stationary modes. TH@aynting
powen current of stable plane-wave solutions can be controlled in magnitude and direction, and may be
reversed without symmetry-breaking perturbations. Also stable localized phase-twisted modes with zero cur-
rent exist, which for particular parameter values may be compact and expressed analytically. The model also
describes coupled Bose-Einstein condensates.
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Introduction The use of nonlinear materials to create Einstein condensatd8ECS in a periodic potential under a
wave interference and demultiplexing/regeneration of higmonlinear tight-binding approximation8], and may for
bit-rate channels in the optical domain is an integral part 0fQ;/2=Q,=Q5 be found also modeling exciton-phonon cou-
high-speed optical communication. Whereas linear direcpling in « helices[9] or as a rotating-wave approximation to
tional couplers have applications as simple optical switchea Fermi-Pasta-Ulam(FPU) chain [10]. A transformation
[1], using nonlinear waveguide arrays for soliton-based¥ (z)—a¥,(b2)e? rescales the parameters(ih) accord-
(multipor)) switching and beam steering is promising for fu-ing to Q;—0, Q;—>Q,/b=K, and Q;—Qjlal?/b=K;,
ture all-optical network§2—4]. These ideas stem from the =3, 4, 5. Choosing?=|Q,/2Qs| andb=0Q, yieldsK,=1 and
well-known properties of the lowest-order phenomenologicalK;=sgrnQ,/Q;). Since the transformatiot,— (-1)"¥,
model, the discrete nonlinear SchrodingBNLS) equation  effectively changes the sign a@, and Qs, it will suffice to
(e.g., [4,5]). The transmission characteristics of a two- study the equation
waveguide device can be utilized for the construction of op-
tical logical gated6]. Incorporating nonlinear coupling be- .. _ 2 2 2
tween the waveguides, motivated, e.g., if the waveguides ard¥Vn= Vo1t Wno Vo Wil* + 2K [2W (Wl + a9
assumed linear but embedded in a nonlinear Kerr material, + W (W2 + W2 )]+ 2K 2| W [A(Wpq + W)
multiguide arrays present features such as compact standing- P « 2 >
wave solutions and mobility of strongly localized modes that +WEWog + Wio) + Woog W+ Wi [WoefT]. (2)
may be used for multiport switching/]. In this paper, we . .
discussphase-twisted modewhich due to the nonlinear in- For general waveguide array@, >0 andQy, j=3, 4, 5, has
teractions are found to exhibit a number of interesting propihe sign of the Kerr index, which implies that we can(a,

erties, not present in the standard DNLS model. chooseK,>0 andKs to have the sign of the Kerr index.
Model The model equation iE7] Making an estimate of the parameter values for an AlGaAs
array of waveguides of the type considered Thwith sizes
i‘i’n = QW+ Qu(Wy + Wpyy) + 2050, W, 2 of 10 um and .operated with a laser in. the infrarén
) , . 5 ~1.5 um), we finda?=|Q,/2Q,| ~ 2 kW. This can be com-
+2Q[2W (| W af? + [Wiig|?) + W (Pry + WP, pared, e.g., with the experimental val@y/2Q; =143 W in
+ 2Qe[ 2/ W AWy + W) + V(W + W) [11] for a configuration with waveguides of a nonlinear ma-
terial. Hence, the powers needed to operate an array with
+ W[ W[+ Wi W], (1) nonnegligible nonlinear coupling are accessible. Further,

with a waveguide separation of the same order as the wave-

whereWy(2) is th_e complex amplitude of the electric _f|eld n guide widths, the parameteks, andKg are of the order 0.1
the nth wavegwde, .th? star denotes Comp'@? COr.”ug"':lt'on(see[7]). In the BEC context, comparing with values calcu-
and the dot differentiation with respect tpthe direction of lated in[8] for ®'Rb atoms, we findQs/Q,|~102-107",

propaggtlon zzllongt:‘he Wa\1eguu?eﬂs1,. The cou%llng CgnSt"’mR}?/hich is about two orders of magnitude larger than for the
Q:~Qs depend on the overlap of the waveguide modes angvaveguide array. We also estimaliés|=|Qs/2Q4| ~ 1072
the K_err m_dex of the surroundmg_ med|_u(uee explicit ex- -107%, where the sign is determined by the effective inter-
pressions in(7]). The_ same equauqn, witQ, ar_gued to be atomic attraction(negative or repulsion(positive.
negligible, was derived for the time evolution of Bose- Equation (2) has two conservation laws, which can be
expressed in terms of discrete continuity equations. The first
conserved quantity is the Hamiltoniak=2,H,, corre-
*Electronic address: micos@ifm.liu.se sponding to invariance under translations Zznwhere the
"Electronic address: mjn@ifm.liu.se Hamiltonian density,
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where ¢,,1=06,.,—6, For stationary solutions, ¥,(2)
—zpe Az we also haved"=AJ" from (4). In general
J # 0 for nontrivial phase t\letsqﬁn# 0,m), so that for a
+ 2K W W (W2 + W2 ) [ +c.c., (3) solutlon to be stationary the net current f/l\(gwmjg\]/)mto site
from its two neighbors must be zero, i.é( -Jﬁm IV,
However, from(6) it follows that with intersne nonlineari-
ties, we may have a zero norm curred&f,v):o, also for
: * N " N solutions with nontrivial phase twists, when
‘];H) =-2 Réq’ml[qfn + 2K4\Pn(2\1,nq,n+l+ \Pn\I’ml) i oK (j\f N )
* * * + +

+ 2KS‘Pn(|\Pn|2 + |‘l,n+1|2) + 2K5‘1"n+1(\1,n“1"n+1 COS¢n+1 =" 4K : ,"/\/nn/v - ! (7)

* 4N +1
+ W)} 4 "

_ Equation(7) restricts the parameter values for the extra zero
The second continuity equation jfs’+J(M—J(M—0 with  to appear sincgcose,.,|<1. When |cos¢,.4|=1 phase-
the norm densityV,,=|¥,|?> and current densny twisted solutions WlthJN% 0 bifurcate from solutions with-
out a twist(sin ¢,,,1=0), and these can generally be extended
to a wider range of parameter values.

Hn= \I’nq’:wl |‘1f |4 + K4(2‘\I’n|2|q’n+1|2 + \I’Z\Pml

satisfiesH,+J - 3" =0, with the flux density

I == 2 Imi[1+ 2K W W + 2K (|02

+ WD IE W ) (5) Constant-amplitude modeA simple family of solutions
to (2) is traveling plane waves of the form¥ (2
The corresponding conserved quantity, the ngvm> M\, :V'%e—i<¢n+Az), where the frequency is given by

is related to the invariance under the overall phase rotations

of W,. Physically, this corresponds to the conservation of , _ IHn = 2(1 + 8Kspo)COS b + po + 4K 4po(2 COSh + 1).
(Poynting power along the waveguides, or, for BECs, to dpo

boson number conservation.

The intersite nonlinearities i(2) lead to a nontrivial norm
current density and Hamiltonian flux density as compared t
the DNLS equationlK,=K5=0), and give rise to a range of
new phenomena. Wrmng the complex amplitudes in action-

Their modulational stability is calculatedcf. [8,12])
é)y perturbing the  solution, W,(2)=[\py+u(2)ed"

+u* (7€M (A2 and keeping only terms linear in
andv. This yields

angle variablesV, =\, %, with A/, and 6, real, (5) sim- <u) _ <a+ b ¢ )(u) _ (u) o
plifies to )7\ ¢ a-b =0 ) (8)
IH, . _ . .
M = _ - with a=2(1+8K,pocosp+8Kspg)sin ¢ sing,
In b1 = 2N Npsssind.s b = -2 cos¢+ po+4K,pe[ 2 cosq(l+cos 2p) —cos 2] +2(1

varva +8Ks5pg)cOsp cosq, and c=py+4K,po(Ccos 2p+2 cosq)
X[+ 4KV NN41C0S by + 2K (N + N ], +8Kpocos¢(1+cosq). Plane waves are linearly stableuif

(6)  are real for allg. Explicitly, by writing

9JM
0. =7, -singE \/ésinzg{— (1 + 1ZKepg)cOS + 4K 4po(2 COZh + 1)]sinzg + poj—;\o}, (9)
I
where we have introduced thienergeti¢ effective mass derivation of the eigenfrequencies. However, the nonequality
11 &ZH B 1&J(N) of m;, and the dispersive effective massg,
My po dd°  po (7¢ 1_4 PHy  PA
= - 21+ &Kspo)COSP ~ Bapcos 26, (10) m, " apg 0 0
we see that the stability properties will be inverted whep == 2(1 + 8Kgpp)COSh — 16K 4poCOS 2, (11

changes sign, i.e., stable and unstable modulatiomgviil

interchange. A point of marginal stability with;}=0 always ~ where A corresponds to the chemical potential in the BEC
separates stable and unstable solutions WwherD, while for ~ context, was noted and connected to the dynamical proper-
K, # 0 solutions may be unstable on both sides. Note that iies of the condensates. Only fé,=Ks=0, the effective

[8], the importance of the factan;} for the stability proper- masses coincide and the criteria for instability reduces to the
ties whenK,=0 was missed due to an approximation in theDNLS resulté?A/d¢?<0 [12].
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added.K,;=0.1, 50 sites and periodic boundary conditions were
used.

FIG. 1. (8 Norm currentJ), and(b) largest imaginary part of
an eigenfrequency dB) vs pq, for K,=0.1,Ks=-0.2, and different
phase gradients: cas=-0.6 (solid), cos¢=-0.2 (dashegl cos¢
=0.2 (dotted and cosp=0.6 (dash-dottef] For these parameter
values, the region around the inversion paifY’=0 is stable for
-1<cos¢=0.4.

rection of propagation, i.e., making the coupling constants
functions ofz. In the BEC context this is equivalent to tuning
the trapping potential as the condensates evolve. If the varia-
tion of the coupling constants is small compared to typical
propagation wavelengths of the medium, we may still (e
With the nonlinear dependence of the norm currét to describe t.he system. Further, the consgrvation of norm and
some control parameter can be used to govern the magnitudig® expressior5) for the norm current will still be valid,
and, as opposed to the DNLS ca@é,=Ks=0), also the although the parameters dependzo#ks an |IIustrat|on(F|g..
direction of the current for a given phase twigt With K,  3)» We integraté2) with Ks=Ks(2) varying over a range with
=0 andKs<0, the factor 1+Kgp, determines the sign of Stable plane-wave solutions, keepigconstant for simplic-
JM. Hence, by varying the amplitude, the current can bely: and _calcula'_[e t_he norm current f_Ic_)wmg _through thg lat-
tuned to zero and its direction changeBut, since the same tice. Using periodic boundary conditions, i.e., modeling a
factor appears inm?} the stability properties will also be circular array, |mpI|§s a quantization pf the phase gradlent
changed, i.e., the solution cannot be stable for both directionéM € 27Z, whereM is the number of sites. AlSs(2) varies,
of the current around the inversion point. Including also thethe amplitude and the phase gradient are unchanged, within
K, term, the zeros oY) andm;} will depend on the phase thg size of the random perturbatlon., and only the frequency
gradients and in general not coincide. Numerical analysis of A is tuned. Thus, plane-wave solutions are robust to varia-
(9) for K,>0 shows stable solutions, at least for &  tion in the waveguide configuration along the dlrgctlon of
<0.2, around the current inversion point as exemplified inPropagation, and the current can be reversétiout intro-
Fig. 1. For a given phase gradient@s< m, the current will ~ ducing any symmetry-breaking perturbatiam the system
be positive(negative for low (high) amplitudes for the pa- . .
rameter values in the figure. Hence, the power transfer across Apart from the plane waves we may also consider other
the waveguides can be controlled by changing the amplitudgolutions with constant amplitude, e.g., solutions g\“th a
of the plane wave. The same mechanism also applies for e : _ f oy _
fixed amplitude and varying phase gradient, as shown in Figé.’j‘ngle nontrivial twistdm = ¢ satisfying (7) and ¢n_{77
2. ForK,<0, all solutions are found to be unstable near afor n#m+1. The constraint7) is necessary to have a sta-
current inversion point. Experimentally, the phase gradientionary solution, since there is no norm current flowing
can be controlled by launching the laser beam that excitethrough the lattice for solutions of this type. Inserting the
the waveguides at an angle to the arfage, e.g.[13]). ansatz in(2) it is required thatk,=+Ks and A=+2(1
A third way to control the direction of the current is by +2Kspg) +po, Where the uppetiower) sign is for an unstag-
changing the configuration of the waveguides along the digered (staggerefl background, ¢,=0 (¢,=m). From (7)
we have cosh=+[1+(4Kspp)t], which imposes -2

(a) 0.8 <8Kgpo=-1. With these constraints inserted (®, we see
04t/ that the staggered background is always stable, while the
JN Y unstaggered background is stable whé&@ 4 -1. However,
0 : numerics shows that an eigenmode localized around the twist
(b) always yields an instability, except at the bifurcation point
A e #=0 where the solution with staggered background is stable
Im{w} N,/ N for Kg=—1/8py>-0.1146.
L\ / T \ y’ Other types of stationary modes with nontrivial phase re-
O ———y% i g lations were recently found for the DNLS equatifi].

cosod)

FIG. 2. (a8 Norm currentJ), and(b) largest imaginary part of
an eigenfrequency of8) vs cose, for K,=0.1,K5=-0.2, andpg
=1 (solid); K4=0.1,K5=-0.5, andpy=0.5 (dashe¢f K,=-0.1,Kg
=-0.2, andpo=1 (dotted. Note the marginal stability whem}
% JM[3¢p=0.

These solutions were constructed from two independent sub-
lattices, each of constant amplitude and defined over odd and
even sites, respectively, with the amplitudes out of phase on

each sublattice and an arbitrary phase difference between the
sublattices. Effectively the two sublattices are decoupled, but

there is still a transfer of norm along the lattice, i.&%
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# 0. Such solutions can be found also Ky=0 in our model (a) 157 (b)2
2.

Localized modesEquation(2) also supports exaetom- 1 Pnl

pact solutions[ 7], originating from an effective decoupling Im{w}

0
of parts of the lattice. From the linear-coupling terms and the 05 i (c) 4.._.‘
last two terms in theKs part of (2), it follows that M-site ' ¢n2
compact solutions, with\/,,,;=0 for j<-1 andj=M, and 0 P 0+ -
Nmwj>0 for j=0,1,...,M-1, may exist if 1+KsN=1 —0.04 —0.02 _0 002 004 I n I
+2KsNmm-1=0. The simple real two-site compact solutions Ky

. 0 _ FIG. 4. (a) Largest imaginary part of an eigenfrequencyk;

are given byNp=Np.1=-1/2Ks, d’m*lz{w} and A==3 from the linear stgbility an%lysi)sl gf localized r%odesqwith g sfngle
-1/2Ks—3K,/ Kz [7]. Applying the constraint7), which is  phase twist for cog,=-0.8333 andKs=-0.1 (solid), and for
necessary for localized solutions sink'=0 atn=+o, we  c0S¢$;=0.8333 ancKs=-0.05(dashedl The amplitude profiles for
can also findcomplex compact solutionsvith the same the two casestb) [Ks=-0.1] K,=0 (solid), andK,=0.04 (dasheg
amplitude as above, the phase difference given byggps  (€) [Ks=-0.05K,=-0.04(solid) andK,=0.04(dashedl The solu-
=-Ks5/2K, and the frequency\ =-1/2Kg5+Ks/K,—K,/Ks. tions are compact foK;=-0.06 andK,;=0.03, respectively. The
These complex solutions bifurcate from the real solutions agecond half of the amplitude profile is given By,=€?1p,;.
Ks=-2|K,|, but it is not possible to continuously go from the
symmetric to the antisymmetric real compact solution within ) _ _ ) )
the class of complex compact solutions, since excitation§olutions with a single phase twist can be found in both
with coséy.;>0 (K,>0) are separated from those with cases. Note especially the stability aroufg=0, indicating
cos¢pmi1<0 (K4<0). A numerical investigation shows sta- that these types of solutions are also of relevance in the
bility at both bifurcation points¢.;=0,), but only for ~ coupled BEC context. However, no solutions have been
cospm; >0 will we find stable compact solutions with a found forKs>0, since the continuation could not be carried
nontrivial twist for relatively small values of the parameters, into this parameter regime. For normal DNI(E,;=K5=0),
K,~-Ks=0.1. Stable solutions for practically any phaselocalized stationary phase twisted modes cannot exist due to
twist cos¢,+1>0 can be found as the magnitude of the pa-current conservatiofil6].
rameters is decreased. Conclusion We have shown that taking into account non-

Also noncompact localized phase-twisted solutions mayinear coupling in the DNLS model for waveguide arrays
be investigated by taking the compact solutions as initialeads to a number of interesting phenomena, such as norm
conditions in a Newton method following paths in parametercyrrent reversal and stationary complex localized solutions
space(cf., e.g.,[15]). For simplicity we study solutions with  that may be compact. Estimating the strength of the param-
a symmetric profile, '-e-‘vI’m—n:_e'qSm+l Wi for all nand  gters in(1) indicates that effects of the nonlinear coupling
some sitem. We assume also sih,=0 forn#m+1, i.e., the can pe observed experimentally, both for waveguide arrays
s_olutlon has onlyatywst at the cent_er. This restriction may bend coupled BEC in the casé;>0. However, the most
lifted, e.g., by applying the constraifiZ) between each site, jnteresting phenomena occur fé;<0. Thus, a material
as well as by starting with other complex compact solutionsyyith negative Kerr index or, alternatively, condensates with

although find'ing analytic sqlutions With more site§ excited isyn effective interatomic attraction, of sufficient strength is
connected with an increasing algebraic complexity. needed.

In Fig. 4 the results of the continuation for two cases,
cos¢.+1 positive and negative, are shown. Stable localized We thank the Swedish Research Council for support.

[1] A. Yariv, Optical Electronics in Modern Communicatiqrith Trombettoni, New J. Phys5, 112 (2003.

ed. (Oxford University Press, New York, 1987 [9] K. Kundu, Phys. Rev. B61, 5839(2000.
[2] H. S. Eisenbergt al, Phys. Rev. Lett.81, 3383(1998. [10] Ch. Claudeet al,, Phys. Rev. B47, 14 228(1993.
[3] O©. Bang and P. D. Miller, Phys. Scr., &7, 26 (1996. [11] J. Meieret al, Phys. Rev. Lett93, 093903(2004.

[4] Yu. S. Kivshar and G. P. Agrawabptical Solitons—From  [12] yu. S. Kivshar and M. Peyrard, Phys. Rev.4§, 3198(1992.
Fibers to Photonic Crystal¢éAcademic Press, London, 2003  [13] R. Morandottiet al, Phys. Rev. Lett86, 3296 (2001).

[5] J. C. Eilbeck and M. Johansson, liocalization and Energy [14] L. Casetti and V. Penna, J. Low Temp. Phy€6, 455(2002;
Transfer in Nonlinear Systemsdited by L. Vazque=zt al. M. Machholmet al, Phys. Rev. A69, 043604(2004; T. J.
(World Scientific, Singapore, 2003p. 44. Alexander, A. A. Sukhorukov, and Yu. S. Kivshar, Phys. Rev.

[6] S. M. Jensen, IEEE J. Quantum Electrdr8, 1580(1982. Lett. 93, 063901(2004)

[7]M. Oster, M. Johansson, and A. Eriksson, Phys. ReWE 151 5 ¢ Eijlpeck, P. S. Lomdahl, and A. C. Scott, Phys. ReG®
056606(2003. 4703 (1984,

[8] A. Smerzi and A. Trombettoni, Chaok3, 766 (2003; Phys.
Rev. A 68, 023613(2003: C. Menotti, A. Smerzi, and A, -0 M- Johansson, Phys. Rev. @, 048601(2002.

025601-4



