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We consider a lattice model for waveguide arrays embedded in nonlinear Kerr media. Inclusion of nonlinear
coupling results in many phenomena involving complex, phase-twisted, stationary modes. The normsPoynting
powerd current of stable plane-wave solutions can be controlled in magnitude and direction, and may be
reversed without symmetry-breaking perturbations. Also stable localized phase-twisted modes with zero cur-
rent exist, which for particular parameter values may be compact and expressed analytically. The model also
describes coupled Bose-Einstein condensates.
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Introduction. The use of nonlinear materials to create
wave interference and demultiplexing/regeneration of high
bit-rate channels in the optical domain is an integral part of
high-speed optical communication. Whereas linear direc-
tional couplers have applications as simple optical switches
f1g, using nonlinear waveguide arrays for soliton-based
smultiportd switching and beam steering is promising for fu-
ture all-optical networksf2–4g. These ideas stem from the
well-known properties of the lowest-order phenomenological
model, the discrete nonlinear SchrödingersDNLSd equation
se.g., f4,5gd. The transmission characteristics of a two-
waveguide device can be utilized for the construction of op-
tical logical gatesf6g. Incorporating nonlinear coupling be-
tween the waveguides, motivated, e.g., if the waveguides are
assumed linear but embedded in a nonlinear Kerr material,
multiguide arrays present features such as compact standing-
wave solutions and mobility of strongly localized modes that
may be used for multiport switchingf7g. In this paper, we
discussphase-twisted modes, which due to the nonlinear in-
teractions are found to exhibit a number of interesting prop-
erties, not present in the standard DNLS model.

Model. The model equation isf7g

iĊn = Q1Cn + Q2sCn−1 + Cn+1d + 2Q3CnuCnu2

+ 2Q4f2CnsuCn−1u2 + uCn+1u2d + Cn
*sCn−1

2 + Cn+1
2 dg

+ 2Q5f2uCnu2sCn−1 + Cn+1d + Cn
2sCn−1

* + Cn+1
* d

+ Cn−1uCn−1u2 + Cn+1uCn+1u2g, s1d

whereCnszd is the complex amplitude of the electric field in
the nth waveguide, the star denotes complex conjugation,
and the dot differentiation with respect toz, the direction of
propagation along the waveguides. The coupling constants
Q1–Q5 depend on the overlap of the waveguide modes and
the Kerr index of the surrounding mediumssee explicit ex-
pressions inf7gd. The same equation, withQ4 argued to be
negligible, was derived for the time evolution of Bose-

Einstein condensatessBECsd in a periodic potential under a
nonlinear tight-binding approximationf8g, and may for
Q3/2=Q4=Q5 be found also modeling exciton-phonon cou-
pling in a helicesf9g or as a rotating-wave approximation to
a Fermi-Pasta-UlamsFPUd chain f10g. A transformation
Cnszd°aCnsbzde−iQ1z rescales the parameters ins1d accord-
ing to Q1°0, Q2°Q2/b;K2 and Qj °Qjuau2/b;Kj , j
=3, 4, 5. Choosinga2= uQ2/2Q3u andb=Q2 yieldsK2=1 and
2K3=sgnsQ2/Q3d. Since the transformationCn° s−1dnCn

effectively changes the sign onQ2 andQ5, it will suffice to
study the equation

iĊn = Cn−1 + Cn+1 + CnuCnu2 + 2K4f2CnsuCn−1u2 + uCn+1u2d

+ Cn
*sCn−1

2 + Cn+1
2 dg + 2K5f2uCnu2sCn−1 + Cn+1d

+ Cn
2sCn−1

* + Cn+1
* d + Cn−1uCn−1u2 + Cn+1uCn+1u2g. s2d

For general waveguide arrays,Q2.0 andQj , j =3, 4, 5, has
the sign of the Kerr index, which implies that we can, ins2d,
chooseK4.0 and K5 to have the sign of the Kerr index.
Making an estimate of the parameter values for an AlGaAs
array of waveguides of the type considered inf7g with sizes
of 10 mm and operated with a laser in the infraredsl
,1.5 mmd, we finda2= uQ2/2Q3u,2 kW. This can be com-
pared, e.g., with the experimental valueuQ2/2Q3u=143 W in
f11g for a configuration with waveguides of a nonlinear ma-
terial. Hence, the powers needed to operate an array with
nonnegligible nonlinear coupling are accessible. Further,
with a waveguide separation of the same order as the wave-
guide widths, the parametersK4 andK5 are of the order 0.1
sseef7gd. In the BEC context, comparing with values calcu-
lated in f8g for 87Rb atoms, we finduQ5/Q2u,10−2−10−1,
which is about two orders of magnitude larger than for the
waveguide array. We also estimateuK5u= uQ5/2Q3u,10−2

−10−1, where the sign is determined by the effective inter-
atomic attractionsnegatived or repulsionspositived.

Equation s2d has two conservation laws, which can be
expressed in terms of discrete continuity equations. The first
conserved quantity is the HamiltonianH=onHn, corre-
sponding to invariance under translations inz, where the
Hamiltonian density,
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Hn = FCnCn+1
* +

1

4
uCnu4 + K4s2uCnu2uCn+1u2 + Cn

2Cn+1
*2 d

+ 2K5CnCn+1sCn
*2 + Cn+1

*2 dG + c . c . , s3d

satisfiesḢn+Jn
sHd−Jn−1

sHd =0, with the flux density

Jn
sHd = − 2 RehĊn+1fCn

* + 2K4Cn
*s2CnCn+1

* + Cn
*Cn+1d

+ 2K5Cn
*suCnu2 + uCn+1u2d + 2K5Cn+1

* sCnCn+1
*

+ Cn
*Cn+1dgj. s4d

The second continuity equation isṄn+Jn
sNd−Jn−1

sNd =0, with
the norm densityNn= uCnu2 and current density

Jn
sNd = − 2 Imhf1 + 2K4Cn

*Cn+1 + 2K5suCnu2

+ uCn+1u2dgCn
*Cn+1j. s5d

The corresponding conserved quantity, the normN=onNn,
is related to the invariance under the overall phase rotations
of Cn. Physically, this corresponds to the conservation of
sPoyntingd power along the waveguides, or, for BECs, to
boson number conservation.

The intersite nonlinearities ins2d lead to a nontrivial norm
current density and Hamiltonian flux density as compared to
the DNLS equationsK4=K5=0d, and give rise to a range of
new phenomena. Writing the complex amplitudes in action-
angle variablesCn=ÎNne

−iun, with Nn andun real, s5d sim-
plifies to

Jn
sNd = −

]Hn

]fn+1
= 2ÎNnNn+1sinfn+1

3 f1 + 4K4ÎNnNn+1cosfn+1 + 2K5sNn + Nn+1dg,

s6d

where fn+1;un+1−un. For stationary solutions, Cnszd
=cne

−iLz, we also haveJn
sHd=LJn

sNd from s4d. In general
Jn

sNdÞ0 for nontrivial phase twistssfnÞ0,pd, so that for a
solution to be stationary the net current flowing into siten
from its two neighbors must be zero, i.e.,Jn

sNd=Jn+1
sNd ;JsNd.

However, froms6d it follows that with intersite nonlineari-
ties, we may have a zero norm current,Jn

sNd=0, also for
solutions with nontrivial phase twists, when

cosfn+1 = −
1 + 2K5sNn + Nn+1d

4K4ÎNnNn+1

. s7d

Equations7d restricts the parameter values for the extra zero
to appear sinceucosfn+1uø1. When ucosfn+1u=1 phase-
twisted solutions withJn

sNd=0 bifurcate from solutions with-
out a twistssinfn+1=0d, and these can generally be extended
to a wider range of parameter values.

Constant-amplitude modes. A simple family of solutions
to s2d is traveling plane waves of the formCnszd
=Îr0e

−isfn+Lzd, where the frequency is given by

L =
]Hn

]r0
= 2s1 + 8K5r0dcosf + r0 + 4K4r0s2 cos2f + 1d.

Their modulational stability is calculatedscf. f8,12gd
by perturbing the solution, Cnszd=fÎr0+uszdeiqn

+v* szde−iqnge−isfn+Lzd, and keeping only terms linear inu
andv. This yields

iSu̇

v̇
D = Sa + b c

− c a− b
DSu

v
D = v±Su

v
D , s8d

with a=2s1+8K4r0cosf+8K5r0dsinf sinq,
b = −2 cosf+r0+4K4r0f2 cosqs1+cos 2fd−cos 2fg+2s1
+8K5r0dcosf cosq, and c=r0+4K4r0scos 2f+2 cosqd
+8K5r0cosfs1+cosqd. Plane waves are linearly stable ifv±

are real for allq. Explicitly, by writing

v± =
]JsNd

]r0
sinq ±Î 4

mH
sin2q

2
H− 2fs1 + 12K5r0dcosf + 4K4r0s2 cos2f + 1dgsin2q

2
+ r0

]L

]r0
J , s9d

where we have introduced thesenergeticd effective mass

1

mH
=

1

r0

]2Hn

]f2 =
− 1

r0

]JsNd

]f

= − 2s1 + 4K5r0dcosf − 8K4r0cos 2f, s10d

we see that the stability properties will be inverted whenmH
changes sign, i.e., stable and unstable modulations inq will
interchange. A point of marginal stability withmH

−1=0 always
separates stable and unstable solutions whenK4=0, while for
K4Þ0 solutions may be unstable on both sides. Note that in
f8g, the importance of the factormH

−1 for the stability proper-
ties whenK4=0 was missed due to an approximation in the

derivation of the eigenfrequencies. However, the nonequality
of mH and the dispersive effective massmL,

1

mL

=
]

]r0

]2Hn

]f2 =
]2L

]f2

= − 2s1 + 8K5r0dcosf − 16K4r0cos 2f, s11d

whereL corresponds to the chemical potential in the BEC
context, was noted and connected to the dynamical proper-
ties of the condensates. Only forK4=K5=0, the effective
masses coincide and the criteria for instability reduces to the
DNLS result]2L /]f2,0 f12g.
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With the nonlinear dependence of the norm currents6d,
some control parameter can be used to govern the magnitude
and, as opposed to the DNLS casesK4=K5=0d, also the
direction of the current for a given phase twistf. With K4
=0 andK5,0, the factor 1+4K5r0 determines the sign of
JsNd. Hence, by varying the amplitude, the current can be
tuned to zero and its direction changed. But, since the same
factor appears inmH

−1 the stability properties will also be
changed, i.e., the solution cannot be stable for both directions
of the current around the inversion point. Including also the
K4 term, the zeros ofJsNd andmH

−1 will depend on the phase
gradientf and in general not coincide. Numerical analysis of
s9d for K4.0 shows stable solutions, at least for allK4
&0.2, around the current inversion point as exemplified in
Fig. 1. For a given phase gradient 0,f,p, the current will
be positivesnegatived for low shighd amplitudes for the pa-
rameter values in the figure. Hence, the power transfer across
the waveguides can be controlled by changing the amplitude
of the plane wave. The same mechanism also applies for a
fixed amplitude and varying phase gradient, as shown in Fig.
2. For K4,0, all solutions are found to be unstable near a
current inversion point. Experimentally, the phase gradient
can be controlled by launching the laser beam that excites
the waveguides at an angle to the arrayssee, e.g.,f13gd.

A third way to control the direction of the current is by
changing the configuration of the waveguides along the di-

rection of propagation, i.e., making the coupling constants
functions ofz. In the BEC context this is equivalent to tuning
the trapping potential as the condensates evolve. If the varia-
tion of the coupling constants is small compared to typical
propagation wavelengths of the medium, we may still uses2d
to describe the system. Further, the conservation of norm and
the expressions5d for the norm current will still be valid,
although the parameters depend onz. As an illustrationsFig.
3d, we integrates2d with K5=K5szd varying over a range with
stable plane-wave solutions, keepingK4 constant for simplic-
ity, and calculate the norm current flowing through the lat-
tice. Using periodic boundary conditions, i.e., modeling a
circular array, implies a quantization of the phase gradient
fM P2pZ, whereM is the number of sites. AsK5szd varies,
the amplitude and the phase gradient are unchanged, within
the size of the random perturbation, and only the frequency
L is tuned. Thus, plane-wave solutions are robust to varia-
tion in the waveguide configuration along the direction of
propagation, and the current can be reversedwithout intro-
ducing any symmetry-breaking perturbationin the system
s2d.

Apart from the plane waves we may also consider other
solutions with constant amplitude, e.g., solutions with a

single nontrivial twistfm+1;f satisfying s7d and fn=h0

p j
for nÞm+1. The constraints7d is necessary to have a sta-
tionary solution, since there is no norm current flowing
through the lattice for solutions of this type. Inserting the
ansatz in s2d it is required thatK4= 7K5 and L= ±2s1
+2K5r0d+r0, where the upperslowerd sign is for an unstag-
gered sstaggeredd background, fn=0 sfn=pd. From s7d
we have cosf= ± f1+s4K5r0d−1g, which imposes −2
ø8K5r0ø−1. With these constraints inserted ins9d, we see
that the staggered background is always stable, while the
unstaggered background is stable when 4K5,−1. However,
numerics shows that an eigenmode localized around the twist
always yields an instability, except at the bifurcation point
f=0 where the solution with staggered background is stable
for K5=−1/8r0.−0.1146.

Other types of stationary modes with nontrivial phase re-
lations were recently found for the DNLS equationf14g.
These solutions were constructed from two independent sub-
lattices, each of constant amplitude and defined over odd and
even sites, respectively, with the amplitudes out of phase on
each sublattice and an arbitrary phase difference between the
sublattices. Effectively the two sublattices are decoupled, but
there is still a transfer of norm along the lattice, i.e.,JsNd

FIG. 1. sad Norm currentJsNd, andsbd largest imaginary part of
an eigenfrequency ofs8d vs r0, for K4=0.1, K5=−0.2, and different
phase gradients: cosf=−0.6 ssolidd, cosf=−0.2 sdashedd, cosf
=0.2 sdottedd and cosf=0.6 sdash-dottedd. For these parameter
values, the region around the inversion pointJsNd=0 is stable for
−1,cosf&0.4.

FIG. 2. sad Norm currentJsNd, andsbd largest imaginary part of
an eigenfrequency ofs8d vs cosf, for K4=0.1, K5=−0.2, andr0

=1 ssolidd; K4=0.1, K5=−0.5, andr0=0.5 sdashedd; K4=−0.1,K5

=−0.2, andr0=1 sdottedd. Note the marginal stability whenmH
−1

~]JsNd /]f=0.

FIG. 3. Variation of the norm currentJsNd ssolidd with changing
K5 sdashedd as functions ofz. The initial condition is a plane wave
with r0=1 and f=−13p /25 and a small random perturbation
added.K4=0.1, 50 sites and periodic boundary conditions were
used.
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Þ0. Such solutions can be found also forK4=0 in our model
s2d.

Localized modes. Equations2d also supports exactcom-
pact solutionsf7g, originating from an effective decoupling
of parts of the lattice. From the linear-coupling terms and the
last two terms in theK5 part of s2d, it follows that M-site
compact solutions, withNm+j =0 for j ø−1 and j ùM, and
Nm+j .0 for j =0,1,… ,M −1, may exist if 1+2K5Nm=1
+2K5Nm+M−1=0. The simple real two-site compact solutions

are given byNm=Nm+1=−1/2K5, fm+1=h0

p j and L= 73

−1/2K5−3K4/K5 f7g. Applying the constraints7d, which is
necessary for localized solutions sinceJn

sNd=0 atn= ±`, we
can also findcomplex compact solutions, with the same
amplitude as above, the phase difference given by cosfm+1
=−K5/2K4 and the frequencyL=−1/2K5+K5/K4−K4/K5.
These complex solutions bifurcate from the real solutions at
K5=−2uK4u, but it is not possible to continuously go from the
symmetric to the antisymmetric real compact solution within
the class of complex compact solutions, since excitations
with cosfm+1.0 sK4.0d are separated from those with
cosfm+1,0 sK4,0d. A numerical investigation shows sta-
bility at both bifurcation pointssfm+1=0,pd, but only for
cosfm+1.0 will we find stable compact solutions with a
nontrivial twist for relatively small values of the parameters,
K4,−K5&0.1. Stable solutions for practically any phase
twist cosfm+1.0 can be found as the magnitude of the pa-
rameters is decreased.

Also noncompact localized phase-twisted solutions may
be investigated by taking the compact solutions as initial
conditions in a Newton method following paths in parameter
spacescf., e.g.,f15gd. For simplicity we study solutions with
a symmetric profile, i.e.,Cm−n=eifm+1 Cm+1+n for all n and
some sitem. We assume also sinfn=0 for nÞm+1, i.e., the
solution has only a twist at the center. This restriction may be
lifted, e.g., by applying the constraints7d between each site,
as well as by starting with other complex compact solutions,
although finding analytic solutions with more sites excited is
connected with an increasing algebraic complexity.

In Fig. 4 the results of the continuation for two cases,
cosfm+1 positive and negative, are shown. Stable localized

solutions with a single phase twist can be found in both
cases. Note especially the stability aroundK4=0, indicating
that these types of solutions are also of relevance in the
coupled BEC context. However, no solutions have been
found forK5.0, since the continuation could not be carried
into this parameter regime. For normal DNLSsK4=K5=0d,
localized stationary phase twisted modes cannot exist due to
current conservationf16g.

Conclusion. We have shown that taking into account non-
linear coupling in the DNLS model for waveguide arrays
leads to a number of interesting phenomena, such as norm
current reversal and stationary complex localized solutions
that may be compact. Estimating the strength of the param-
eters ins1d indicates that effects of the nonlinear coupling
can be observed experimentally, both for waveguide arrays
and coupled BEC in the caseK5.0. However, the most
interesting phenomena occur forK5,0. Thus, a material
with negative Kerr index or, alternatively, condensates with
an effective interatomic attraction, of sufficient strength is
needed.
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